

TEAM Project Presentation

ITSWC 2014 – Detroit

Dr. Ilja Radusch, Fraunhofer FOKUS SIS45 (Wednesday, September 10, 2014)

Vision

Achieving always optimal mobility conditions.

Targeting

- Users: Encouraging collaborative behaviour of travellers and drivers.
- Infrastructure: Making infrastructures adapt pro-actively and in real-time based on user needs.
- Communication technologies: Combining automotive communication systems with cloud technologies.

Mission

Turn static into elastic mobility by balancing needs.

Collaboration is the key concept.

It extends the cooperative concept of vehicle-2-x systems to include interaction and participation.

Make travellers and drivers, vehicles and infrastructure act as a **TEAM**

- Adapting to each other
- Adapting to the situation

Motivation

Vehicles and infrastructure already communicate...

ITSWC 2014: TEAM project presentation

Motivation

Smart phones and cloud services will be connected, too.

ITSWC 2014: TEAM project presentation

Motivation

Next: Collaboration integrates and balances all stakeholder needs.

Approach

Four paradigms define the research concept.

(1) Elastic mobility

means a shift from a reactive traffic management to an permanent adaptive and collaborative traffic management.

(2) Window of interaction

refers to the real time needs of human decision making process between 5 seconds and 5 minutes.

(3) Participation

considers the needs and behaviours of road users in the technical systems of intelligent transport solutions.

(4) Collaboration

extends the cooperative concept of vehicle-2-x systems by integrating the user into a highly interactive and participatory network.

Innovations

Building the elastic mobility management system.

	Communication	Converged communication channels.
	Infrastructure	Distributed sensing and "best effort" balancing of needs according to local policies.
P	Data	Consolidated sensor input available in real-time.
	Applications	Novel collaborative applications interconnected through automotive cloud.
	Traveller/driver	Active participation and collaboration.

Objectives and work plan

Technologies and users interlinked.

Creat	te basic technologies	 Advance vehicle-2-x systems with LTE technologies. Develop an automotive cloud-computing platform.
Integ	rate infrastructure- centric technologies and algorithms	 Develop proactive infrastructure-centric algorithms. Enable behavioural change taking into account real-time needs and constraints.
Dem	onstrate distributed technologies and algorithms	 Develop proactive user-, community- and group-centric algorithms. Realise massively distributed collaborative control and optimization concepts.
Evalu	a te the European scope	 Conduct the pan-European Euro-EcoChallenge to demonstrate and evaluate TEAM results.

ITSWC 2014: TEAM project presentation

Stakeholders are essential for the key concept of collaboration.

TEAM uses stakeholders

- to detail use case identification, requirements and state-of-the-art analysis,
- to establish a continuous dialogue to validate and improve designs and development,
- to support the final evaluation,
- to support deployment and exploitation.

The stakeholders are

- car manufacturers
- suppliers
- telecommunication providers
- road infrastructure operators

Expected results

Improving transportation safety and efficiency, Implementing environmental aspects

Novel distributed sensing and "best-effort" balancing algorithms.

Cloud-based local dynamic map services and associated communication technologies.

Off-board telematics services and in-vehicle smart phone integration.

Coaching mechanisms for safe and green driving and travelling.

Infrastructure.

(1) Collaborative urban monitoring and ad-hoc control

can monitor urban roads and recognize incidents or special events while driving

(2) Collaborative co-modal route planning

provides end-users with alternative routes and transportation modes based on their preferences

(3) Co-modal coaching with support from virtual/avatar users

creates a "virtual" coach (avatar) for end users- comparing true costs, travel times, CO2 emissions and more

ITSWC 2014: TEAM project presentation

Infrastructure.

(4) Collaborative smart intersection for intelligent priorities

optimizes traffic flow at intersections, includes priority to certain vehicles (i.e. buses), synchronization of traffic lights, speed recommendations

(5) Collaborative public transport optimization

works towards adaptive bus scheduling, based on input from travellers (transmitted via Smartphone)

(6) Collaborative dynamic corridors

establishes corridors i.e. for heavy vehicles (certain lanes could be reserved for trucks to deliver goods more efficiently)

ITSWC 2014: TEAM project presentation

Tomorrow's Elastic Adaptive Mobility

Travellers & drivers.

(1) Collaborative adaptive cruise control

adapts vehicle speed to optimize traffic, reducing velocity deviations and fuel consumption

(2) Collaborative eco-friendly parking

enables TEAM vehicles access to real time information about parking availability (on- and off-street), balancing local demand

(3) Collaborative driving and merging

addresses challenges in the collaboration among vehicles (fast lane changes, roundabout driving, emergency braking etc.)

ITSWC 2014: TEAM project presentation

Travellers & drivers.

(4) Serious game and community building

creates a gamified environment where drivers and passengers can share their information, learn proper driving styles, receive incentives to support collaborative behaviour

(5) Collaborative eco-friendly navigation

merges all information (from road users, traffic data, infrastructure) to create collaborative eco-friendly routing and navigation

ITSWC 2014: TEAM project presentation

Infrastructure stakeholders' involvement

Including major municipalities from the beginning.

Germany – Berlin

Co-modality test in the large scale public transport system and urban traffic management applications.

Italy – Turin and Trento province

Verification of the TEAM service continuity for the travellers and drivers community.

Sweden – Gothenburg

Trials of interurban applications and vehicle to vehicle communication.

Greece – Athens and Trikala

Test and demonstration of all FLEX applications.

Finland – Tampere and Helsinki

Integration of DIALOGUE applications into real world infrastructure data.

The test set-up for components.

- Technology and performance test of all components and applications.
- Instructed users will test the TEAM developments.
- Challenges for TEAM application users (mainly drivers and travellers) to demonstrate the behavioral changes.
- Demonstration of results in public events.

Work structure

Work structure

Workflow orrow's Flastic Adaptive Mobility SP1 MANAGEMENT Euro-EcoChallenge EVALUATION applications enablers applications enablers SP3 FLEX: infrastructure-SP4 DIALOGUE: user-centric technologies centric technologies SP5

SP2 EMPOWER: advanced technologies

SP6 SUPPORT: dissemination and standardisation

ITSWC 2014: TEAM project presentation

Milestones and timeline

Duration 48 months, November 2012 – October 2016

ITSWC 2014: TEAM project presentation

Team facts

Duration:48 monthsNovember 2012 – October 2016

 Total budget:
 17.1 m€

EU funding: 11.1 m€

Coordinator:Fraunhofer FOKUS, Dr. Ilja RaduschConsortium:28 partners7 support partners

This project is co-funded by the European Union

ITSWC 2014: TEAM project presentation

TEAM collaborations

Selected liaison and interaction partners and projects

Thank you!

Dr. Ilja Radusch TEAM project coordinator Fraunhofer FOKUS

Contact

Kaiserin-Augusta-Allee 31

D- 10589 Berlin

Tel.: ++49 30 914 26 36-474 Email: ilja.radusch@fokus.fraunhofer.de http://www.collaborative-team.eu/

www.collaborative-team.eu